"3\“'.":" ] ] ]
L"Es'“ Bilkent University

Department of Computer Engineering

Senior Design Project

Foodster: Maintain your diet easier

Low Level Design Report

Khasmamad Shabanovi, Gledis Zeneli, Balaj Saleem, Ibrahim Elmas, Perman Atayev

Supervisor: Ozcan Ozturk



Contents

Introduction

1.1 Object design trade-offs
1.1.1 Performance vs Security
1.1.2 Maintainability vs Supportability
1.1.3 Reliability vs Scalability
1.2 Interface documentation guidelines
1.3 Engineering standards

1.4 Definitions, acronyms, and abbreviations

Packages

2.1 Client

Client side of our application has three components: view, controller, and model. This

section presents detailed information on these components.

2.1.1 View
2.1.2 Controller
2.1.3 Model

2.2 Server
2.2.1 Route Tier
2.2.2 Logic Tier
2.2.3 Data Tier

Class Interfaces

3.1 Client
3.1.1 View
3.1.1 Controller
3.1.1 Model

3.2 Server
3.2.1 Route Tier
3.2.2 Logic Tier

3.2.3 Data Tier

13
15
23
23
23

28



1. Introduction

Food is the first of all fundamental human needs, yet how many times today have you,
personally, consciously thought of what you have and will be eating today, what its
nutritional value is and how it fits into your greater nutritional, fitness, and lifestyle goals?
With the ease of falling into a routine and the abundance of staple food, keeping track of
all these variables, and making sure that you plan your meals such that your priorities are
heeded, becomes increasingly mundane, monotonous, and just unnecessary extra work.

With the fast-paced lifestyle of the 21st century, monotony and unnecessary work are the
last things an individual needs in his/her busy life. Figuring out what to eat, to order or to
cook, how to cook it, where to get the ingredients from, and how beneficial this meal
would be for your body are questions that would take precious time and energy that could
be better employed elsewhere.

Furthermore, the complications of searching for the nutritional data, planning a healthy
diet according to one's needs, planning the budget for such a diet, and finding recipes to
support this time is truly a cumbersome endeavor.

This is where Foodster comes in.

1.1 Object design trade-offs

In this section performance, security, maintainability, supportability, reliability and
scalability of the Foodster application is discussed. Also, which trade-offs are and will be
made while developing the application are explained.

1.1.1 Performance vs Security

e Performance and Security are very important for Foodster, because both of those
contribute a lot to the User Experience and the reliability of our services.

e Security is very important when it comes to users’ passwords and payment
information; however, other information like the diet types they have or the meals
that a user eats are not as sensitive. Therefore, for the security related operations
for hashing passwords and encrypting the card information the CPU and RAM will
be provided as much as needed. However, for less sensitive information less
security measures might be taken to reduce the load of our servers in favor of
performance of the recommendation or scheduling meals algorithms.

1.1.2 Maintainability vs Supportability

e Maintainability of the Foodster is more important than supportability of it because
we are dedicated to provide the best experience to our users for the platforms we
support and we will make sure that their experience will not get worse as we
expand to different Operating Systems and platforms. For now, we decided that
our application will be focused on providing services for Android and iOS users.
Therefore, until we build a platform that provides services to our users without any
major frictions and / problems, we will not expand to Web or Desktop applications.

1.1.3 Reliability vs Scalability

e Both Reliability and Scalability are essential for a good business / application. For
Foodster, reliability of our systems is more important than scalability, because we
do not want our users to lose their data as we expand. Any data that is saved to
our system should not get lost for any reason. Therefore, we will do frequent
backups for our databases and also to make sure that a crash of our main server
does not kill our ability to provide services. We will have a backup idle server that
will be replaced by the main server if the main server crashes.

1.2 Interface documentation guidelines

All the class names are named with PascalCase, where the first letter of every word in the
identifier is upper case. On the other hand, camelCasing is used in naming attributes and
methods, where the first letter of every word in the identifier is upper case except the first



word. The following table displays the template we adopted for interface documentation in
this report.

ClassName is a class responsible for...

1.3 Engineering standards

In order to describe the class interfaces, the diagrams, scenarios, use cases, subsystem
compositions and hardware depictions of the Foodster application, the UML guidelines are
used. The UML is a very important part of developing object oriented software and the
software development process.
1.4 Definitions, acronyms, and abbreviations

API - Application programming interface

DB - Database

NoSQL - Non relational database

HTTP - Hypertext transfer protocol

Cross Platform application - An application that is supported in different platforms
such as Android and iOS

UI - User interface
UX - User experience

OS - Operating system



2. Packages

Foodster’s subsystems are grouped under Client and Server packages. Client package
encapsulates three components, namely View, Controller, and Model. Server package, on
the other hand, consists of Route, Logic, and Data tiers. The client side is responsible for
fetching information from the server side, presenting it to the user, and updating the
information based on the user input. While doing so, the client side sends HTTP requests to
the server side. Server side waits for requests and handles them as they come. It does
most of the heavy work and responds back with the results.

2.1 Client

Client side of our application has three components: view, controller, and model. This section
presents detailed information on these components.

2.1.1 View

The View component of the client consists of all the classes which directly contribute to the
UIL.

2.1.2 Controller

The Controller component of the Client is composed of classes which regulate
communication between the View and Model of the Client, but also between the Client and
the Server.

2.1.3 Model

The Model component of the client consists of all the classes that store information
regarding the real life entities of the dieting process.



2.2 Server

Server side of our application has three components: route tier, logic tier, and data tier.
This section presents detailed information on these components.

2.2.1 Route Tier
Route tier is the component that receives all the requests from clients and delegates them
to the respective logic tier components.

2.2.2 Logic Tier

Logic tier components are each responsible for a specific task. For example,
OrderingRequestHandler, as the name suggests, deals with the requests regarding
ordering food from third-party services.



2.2.3 Data Tier

Lastly, data tier is where all the server side model classes are. This component is similar to
the model component of the client side, except that it includes one additional class -
Im2Ingreds.

3. Class Interfaces

In this section, class methods and parameters together with their explanations are
provided. Subsections of this section are structured similar to the previous section.



3.1 Client

In this section, the classes grouped under the three components of the client package are
presented.

3.1.1 View

HomePage is class that contains the widget the displays the landing page for logged in
user

RegisterPage is class / widget the displays the sign up page for a user




Login is class / widget the displays the sign in page for a user

MealPage is class that contains the widget the displays the meal plan page to a logged in




RecipePage is class that contains the widget the displays the meal plan page to a logged
in user

ProfilePage is class that contains the widget the displays the user profile to a logged in
user

[y

0



Checkout is class that contains the widget the displays the checkout form to a logged in
user

Logs is class that contains the widget the displays the meal logging and trends logged in

11




InventoryPage is class / widget the displays the inventory of ingredients for a logged in
user

Grocery Page is class / widget the displays the grocery page for a user

12




3.1.1 Controller

This controller is responsible for Restful API interactions of the mobile app




This class contains basic warning / message utilities for the app

This class handles shared preferences for a session

14




3.1.1 Model

This class is responsible for holding all the relevant information of a recipe.




Ingredient is responsible for holding information relevant to a real life cooking
ingredient.

Measure is a class responsible for unit management. Different ingredients and food
components are measured in different units and this class handles all the relevant
conversion and information storage.

[y

6



Serving is a class which holds information about a recipe and what amount of that recipe
is cooked.

Edible is a class which holds information about an ingredient and what amount of that
ingredient is used.

[y

7



Meal is a collection of Serving objects which would represent a multi dish meal in real
life.

MealDay is a collection of all the meals planned for consumption on a particular day.

[y

8



MealPlan is a collection of all the daily meal plans, planned for consumption on a multi
day time duration.

Inventory is responsible for storing an inventory of ingredients and their measures.

[y

9



The user class holds relevant information needed to produce recommendations for a
user, and some user account related information.




Nutrition holds macro and micro nutrient information.




Preference is responsible for grouping filters that the user would typically apply while
generating meals or meal plans.




3.2 Server

In this section, the classes grouped under the three components of the client package are
presented.

3.2.1 Route Tier

This class is responsible for handling requests and rerouting them to a relevant request
handler if possible.

3.2.2 Logic Tier

This class is responsible for handling user related requests. The handler methods of this
class return true if successful, false otherwise. Request body that is provided to requests
will contain all the relevant information that is needed by the method. Arguments to the
methods (data) are passed inside the request body. For every request regarding a user a
token is expected.




This class is responsible for handling the Im2Ingreds class related requests. The handler
methods of this class return true if successful, false otherwise. Arguments to the
methods (data) are passed inside the request body

N
s ‘



This class is responsible for the authentication of the related request. The handler
methods of this class return true if successful, false otherwise. Arguments to the
methods (data) are passed inside the request body.

This class is going to handle all the requests to the server related to registration.
Arguments to the methods (data) are passed inside the request body.

This class is responsible for recommending meals to users taking into consideration the
history of meals that users liked and other preferences that they provided to the

Foodster such as their diet types, amount of calories they want to take in, their budget
et cetera. Arguments to the methods (data) are passed inside the request body.

25



The class that manages grocery list operations. The request body for these methods
assumed to have all relevant information for the method.




The class that manages recipe operations. The request body for these methods assumed to have all
relevant information for the method.

The class that manages meal ordering operations. The request body for these methods assumed to have
all relevant information for the method.

27




3.2.3 Data Tier
Data tier classes are the same with the client side model classes, except Im2Ingreds,
which is presented below.

This class is responsible for inferring ingredients of a meal given a picture of the meal.




