
Bilkent University

Senior Design Project
Foodster: Maintain your diet easier

Low Level Design Report

Khasmamad Shabanovi, Gledis Zeneli, Balaj Saleem, Ibrahim Elmas, Perman Atayev

Supervisor: Ozcan Ozturk

Contents

Introduction 3

1.1 Object design trade-offs 3

1.1.1 Performance vs Security 3

1.1.2 Maintainability vs Supportability 3

1.1.3 Reliability vs Scalability 3

1.2 Interface documentation guidelines 3

1.3 Engineering standards 4

1.4 Definitions, acronyms, and abbreviations 4

Packages 5

2.1 Client 5

Client side of our application has three components: view, controller, and model. This
section presents detailed information on these components. 5

2.1.1 View 5

2.1.2 Controller 5

2.1.3 Model 5

2.2 Server 6

2.2.1 Route Tier 6

2.2.2 Logic Tier 6

2.2.3 Data Tier 7

Class Interfaces 7

3.1 Client 8

3.1.1 View 8

3.1.1 Controller 13

3.1.1 Model 15

3.2 Server 23

3.2.1 Route Tier 23

3.2.2 Logic Tier 23

3.2.3 Data Tier 28

2

1. Introduction

Food is the first of all fundamental human needs, yet how many times today have you,
personally, consciously thought of what you have and will be eating today, what its
nutritional value is and how it fits into your greater nutritional, fitness, and lifestyle goals?
With the ease of falling into a routine and the abundance of staple food, keeping track of
all these variables, and making sure that you plan your meals such that your priorities are
heeded, becomes increasingly mundane, monotonous, and just unnecessary extra work.

With the fast-paced lifestyle of the 21st century, monotony and unnecessary work are the
last things an individual needs in his/her busy life. Figuring out what to eat, to order or to
cook, how to cook it, where to get the ingredients from, and how beneficial this meal
would be for your body are questions that would take precious time and energy that could
be better employed elsewhere.

Furthermore, the complications of searching for the nutritional data, planning a healthy
diet according to one's needs, planning the budget for such a diet, and finding recipes to
support this time is truly a cumbersome endeavor.

This is where Foodster comes in.

1.1 Object design trade-offs
In this section performance, security, maintainability, supportability, reliability and
scalability of the Foodster application is discussed. Also, which trade-offs are and will be
made while developing the application are explained.

1.1.1 Performance vs Security
● Performance and Security are very important for Foodster, because both of those

contribute a lot to the User Experience and the reliability of our services.
● Security is very important when it comes to users’ passwords and payment

information; however, other information like the diet types they have or the meals
that a user eats are not as sensitive. Therefore, for the security related operations
for hashing passwords and encrypting the card information the CPU and RAM will
be provided as much as needed. However, for less sensitive information less
security measures might be taken to reduce the load of our servers in favor of
performance of the recommendation or scheduling meals algorithms.

1.1.2 Maintainability vs Supportability
● Maintainability of the Foodster is more important than supportability of it because

we are dedicated to provide the best experience to our users for the platforms we
support and we will make sure that their experience will not get worse as we
expand to different Operating Systems and platforms. For now, we decided that
our application will be focused on providing services for Android and iOS users.
Therefore, until we build a platform that provides services to our users without any
major frictions and / problems, we will not expand to Web or Desktop applications.

1.1.3 Reliability vs Scalability
● Both Reliability and Scalability are essential for a good business / application. For

Foodster, reliability of our systems is more important than scalability, because we
do not want our users to lose their data as we expand. Any data that is saved to
our system should not get lost for any reason. Therefore, we will do frequent
backups for our databases and also to make sure that a crash of our main server
does not kill our ability to provide services. We will have a backup idle server that
will be replaced by the main server if the main server crashes.

1.2 Interface documentation guidelines

All the class names are named with PascalCase, where the first letter of every word in the
identifier is upper case. On the other hand, camelCasing is used in naming attributes and
methods, where the first letter of every word in the identifier is upper case except the first

3

word. The following table displays the template we adopted for interface documentation in
this report.

ClassName

ClassName is a class responsible for...

Attributes

private int firstAttr

public String secondAttr

Methods

public void setFirstAttr(int val) Sets the firstAttr attribute

public int getFirstAttr() Returns the first attribute

1.3 Engineering standards

In order to describe the class interfaces, the diagrams, scenarios, use cases, subsystem
compositions and hardware depictions of the Foodster application, the UML guidelines are
used. The UML is a very important part of developing object oriented software and the
software development process.

1.4 Definitions, acronyms, and abbreviations

API - Application programming interface

DB - Database

NoSQL - Non relational database

HTTP - Hypertext transfer protocol

Cross Platform application - An application that is supported in different platforms
such as Android and iOS

UI - User interface

UX - User experience

OS - Operating system

4

2. Packages

Foodster’s subsystems are grouped under Client and Server packages. Client package
encapsulates three components, namely View, Controller, and Model. Server package, on
the other hand, consists of Route, Logic, and Data tiers. The client side is responsible for
fetching information from the server side, presenting it to the user, and updating the
information based on the user input. While doing so, the client side sends HTTP requests to
the server side. Server side waits for requests and handles them as they come. It does
most of the heavy work and responds back with the results.

2.1 Client

Client side of our application has three components: view, controller, and model. This section
presents detailed information on these components.

2.1.1 View
The View component of the client consists of all the classes which directly contribute to the
UI.

2.1.2 Controller
The Controller component of the Client is composed of classes which regulate
communication between the View and Model of the Client, but also between the Client and
the Server.

2.1.3 Model
The Model component of the client consists of all the classes that store information
regarding the real life entities of the dieting process.

5

2.2 Server

Server side of our application has three components: route tier, logic tier, and data tier.
This section presents detailed information on these components.

2.2.1 Route Tier
Route tier is the component that receives all the requests from clients and delegates them
to the respective logic tier components.

2.2.2 Logic Tier
Logic tier components are each responsible for a specific task. For example,
OrderingRequestHandler, as the name suggests, deals with the requests regarding
ordering food from third-party services.

6

2.2.3 Data Tier
Lastly, data tier is where all the server side model classes are. This component is similar to
the model component of the client side, except that it includes one additional class -
Im2Ingreds.

3. Class Interfaces

In this section, class methods and parameters together with their explanations are
provided. Subsections of this section are structured similar to the previous section.

7

3.1 Client

In this section, the classes grouped under the three components of the client package are
presented.

3.1.1 View

HomePage

HomePage is class that contains the widget the displays the landing page for logged in
user

Attributes

private int selectedNavIndex

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildAppBar(BuildContext
context))

Builds the app bar which contains the
header

public void
buildBottomNavigationBar(BuildContext
context))

Builds the bottom navigation bar to move
to different tabs

public void onNavItemTapped() performs an action when the bottom
navigation bar item is tapped

RegisterPage

RegisterPage is class / widget the displays the sign up page for a user

Attributes

private String email

private String password

private String gender

Methods

8

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void handleRegister(BuildContext
context))

Validates and handles registration
functionality.

LoginPage

Login is class / widget the displays the sign in page for a user

Attributes

private String email

private String password

private boolean isLoading

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

MealPage

MealPage is class that contains the widget the displays the meal plan page to a logged in
user

Attributes

private MealPlan mealPlan

Methods

public void initState() Initializes the (state) variables of the
class

9

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildDatePicker(BuildContext
context))

Builds the datepicker to select a date for
meals

private void handleMealGeneration() Handles the fetching of mealPlan

RecipePage

RecipePage is class that contains the widget the displays the meal plan page to a logged
in user

Attributes

private Recipe recipe

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildHeader() Builds the header for recipe page

private void buildIngredients() Builds the ingredients list for the recipe

ProfilePage

ProfilePage is class that contains the widget the displays the user profile to a logged in
user

Attributes

private User user

private Preferences preferences

Methods

10

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildHeader() Builds the header for the user details

public void buildUserDetails() Builds the user details section of the page

public void buildPreferences() Builds the user preferences section of the
page

CheckoutPage

Checkout is class that contains the widget the displays the checkout form to a logged in
user

Attributes

private String cardNo
private String name
private String cvv
private String paymentType

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildForm() Builds the card details form for the user
to fill

private void buildSuccessPopup() Builds the success popup if the
transaction is accepted.

LogsPage

Logs is class that contains the widget the displays the meal logging and trends logged in
user

Attributes

11

private Nutrition nutrition
private Trends trends

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

public void buildForm() Builds the nutrition details form for the
user to fill

private void buildTrends() Builds the past trends data in form of
graphs

InventoryPage

InventoryPage is class / widget the displays the inventory of ingredients for a logged in
user

Attributes

private Inventory inventory

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

GroceryPage

Grocery Page is class / widget the displays the grocery page for a user

Attributes

12

private List<String> vendorList

Methods

public void initState() Initializes the (state) variables of the
class

public void build(BuildContext context) Rebuilds the widgets / UI classes
whenever the state is updated in the
current context.

3.1.1 Controller

RestController

This controller is responsible for Restful API interactions of the mobile app

Attributes

private String baseUrl

Methods

public static String token singup(User
user)

Handles the restful api call to signup

public static String token login(String
email, String password)

Handles the restful api call to log in

public static MealPlan getMeals(String
token)

Handles the restful api call to get meals
for a user

public static Trends getTrends(String
token)

Handles the restful api call to get past
trends

public static User getUserDetails(String
token)

Handles the restful api call to get all user
details

public static Preferences
getPreferences(String token)

Handles the restful api call to get user
preferences

public static User
updateUserDetails(String token, User
user)

Handles the restful api call to update user
details

public static Recipe getRecipe(String
token)

Handles the restful api call to get a
unique recipe

13

public static Inventory
getInventory(String token)

Handles the restful api call to get the
Inventory details

public static List<String>
getVendors(String token, String location)

Handles the restful api call to get Vendors
List

public static Inventory
postInventory(String token,, Inventory
inventory)

Handles the restful api call to update the
inventory

public static boolean
processPayment(String token)

Handles the restful api call to process
payment

public static boolean logMeals(String
token, Nutrition nutrition)

Handles the restful api call to log meals

UtilitiesController

This class contains basic warning / message utilities for the app

Attributes

Methods

public void showToast(BuildContext
context)

Shows a toast for a specific UI context

public void showSnackbar(BuildContext
context)

Shows a snackbar for a specific UI
context

public String uppercaseText(String s) Converts a string to uppercase

PreferencesManager

This class handles shared preferences for a session

Attributes

private String token

Methods

14

public String initialize() Initializes the manager to store shared
data

public boolean storeToken(String token) Stores a token for the user in session

public String getTokent() Gets the token for the user in session

public boolean removeToken() Removes the token for the user in session

3.1.1 Model

Recipe

This class is responsible for holding all the relevant information of a recipe.

Attributes

private String Name

private ENUM difficulty

private int prepTime

private int cookTime

private String imgUrl

private Array<String> instructions

private Nutrition nutrition

private double estimatedPrice

private Array<Edible> ingredients

Methods

public static Recipe fromJSON(String
json)

Returns a Recipe object from a json
string.

public static String toJSON(Recipe recipe) Returns the json representation of a
Recipe object

public Nutrition
getScaledNutrition(Measure serving)

Returns a Nutrition object holding data
for an amount of serving of that recipe.

public double getScaledPrice(Measure
serving)

Returns the price for the amount of
servings for the recipe object.

public Array<Edible>
getScaledIngredients(Measure serving)

Returns the ingredients required to cook
an amount of servings for the recipe.

15

getters and setters

Ingredient

Ingredient is responsible for holding information relevant to a real life cooking
ingredient.

Attributes

private String name

private String imgUrl

private Nutrition nutrition

private double estimatedPrice

Methods

public static Ingredient fromJSON(String
json)

Returns an Ingredient object from a
string json.

public static String toJSON(Ingredient
ingr)

Returns the json representation of an
Ingredient object.

public Nutrition
getScaledNutrition(Measure measure)

Returns the nutritions of the Ingredient
object for a measure as a Nutrition
object.

public double getScaledPrice(Measure
measure)

Returns the price of a measure of the
ingredient.

getters and setters

Measure

Measure is a class responsible for unit management. Different ingredients and food
components are measured in different units and this class handles all the relevant
conversion and information storage.

Attributes

private static Map<String, double> conversionTable

private double magnitude

private String unit

16

Methods

constructor(double mag, String unit) Constructs a Measure object with given
magnitude and unit.

public void convert(String newUnit) Converts the objects unit to a new unit

getters and setters

Serving

Serving is a class which holds information about a recipe and what amount of that recipe
is cooked.

Attributes

private Recipe recipe

private Measure measure

Methods

public static Serving fromJSON(String
json)

Returns a Serving object from its json
representation.

public static String toJSON(Serving
serving)

Returns the json representation as a
string of a Serving object.

Edible

Edible is a class which holds information about an ingredient and what amount of that
ingredient is used.

Attributes

private Ingredient ingredient

private Measure measure

Methods

17

public static Edible fromJSON(String json) Returns an Edible object from its json
representation.

public static String toJSON(Edible edible) Returns the json representation as a
string of an Edible object.

Meal

Meal is a collection of Serving objects which would represent a multi dish meal in real
life.

Attributes

private String label

private Array<Serving> servings

Methods

public static Meal fromJSON(String) Returns a Meal object from its json
representation.

public static String toJSON(Meal meal) Returns the json representation as a
String of a Meal object.

MealDay

MealDay is a collection of all the meals planned for consumption on a particular day.

Attributes

private Date date

private Array<Meal> meals

Methods

public static MealDay fromJSON(String) Returns a MealDay object from its json
representation.

public static String toJSON(MealDay
mealDay)

Returns the json representation as a
String of a MealDay object.

18

MealPlan

MealPlan is a collection of all the daily meal plans, planned for consumption on a multi
day time duration.

Attributes

private int duration

private Date startDate

private Date endDate

private Array<MealDay> plan

Methods

public static MealPlan fromJSON(String) Returns a MealPlan object from its json
representation.

public static String toJSON(MealPlan
mealPlan)

Returns the json representation as a
String of a MealPlan object.

public MealDay getMealDay(Date date) Returns the planned MealDay object for a
certain date.

public void setMealDay(MealDay
mealDay, Date date)

Set the planned MealDay object for a
certain date.

getters and setters

Inventory

Inventory is responsible for storing an inventory of ingredients and their measures.

Attributes

private Array<Edible> inventory

Methods

public static Inventory fromJSON(String) Returns an Inventory object from its json
representation.

19

public static String toJSON(Inventory
inventory)

Returns the json representation as a
String of a Inventory object.

public static Inventory
fromMealPlan(MealPlan plan)

Returns an Inventory with all the
ingredients required to cook a MealPlan

public Inventory
getSubInventory(Array<boolean> mask)

Returns a subset of the inventory.
Specifically, it returns an inventory with
all the ingredients whose indexes have a
value ‘true’ in the mask parameter.

User

The user class holds relevant information needed to produce recommendations for a
user, and some user account related information.

Attributes

private String username

private String email

private ENUM gender

private double height

private double weight

private String profileImage

private Array<Ingredient> allergies

private Array<Preference> preferences

private Array<Recipe> likedRecipes

private Array<Recipe> dislikedRecipes

private Array<Ingredient> likedIngredients

private Array<Ingredient> dislikedIngredient

Methods

public static User fromJSON(String) Returns a User object from its json
representation.

public static String toJSON(User user) Returns the json representation as a
String of a User object.

public void addPreference(Preference
newPreference)

Adds a new Preference to the list of user
preferences

20

public void rmPreference(Preference
preference)

Removes a Preferences from the list of
user preferences.

public void addAllergy(Ingredient ingr) Adds an ingredient to the list of user
allergies.

public void rmAllergy(Ingredient ingr) Removes an ingredient from the list of
user allergies.

public void addLikeRecipe(Recipe
likedRecipe)

Adds a recipe to the list of liked recipes.

public void rmLikedRecipe(Recipe recipe) Removes a recipe from the list of liked
recipes.

public void addDislikedRecipe(Recipe
dislikedRecipe)

Adds a recipe to the list of disliked
recipes.

public void rmDislikedRecipe(Recipe
recipe)

Removes a recipe for the list of disliked
recipes.

public void addLikedIngredient(Ingredient
ingredient)

Adds an ingredient to the list of liked
ingredients

public void rmLikedIngredient(Ingredient
ingredient)

Removes an ingredient from the list of
liked ingredients.

public void
addDislikedIngredient(Ingredient
ingredient)

Adds an ingredient in the list of disliked
ingredients.

public void
rmDislikedIngredient(Ingredient
ingredient)

Removes an ingredient from the list of
disliked ingredients.

getters and setters

Nutrition

Nutrition holds macro and micro nutrient information.

Attributes

private Measure base

private int calories

private int carbs

private int proteins

private int fats

private Map<String, Measure> micros

21

Methods

public static Nutrition fromJSON(String) Returns a Nutrition object from its json
representation.

public static String toJSON(Nutrition
nutrition)

Returns the json representation as a
String of a Nutrition object.

getters and setters

Preference

Preference is responsible for grouping filters that the user would typically apply while
generating meals or meal plans.

Attributes

private int mealsPerDay

private Pair<int, int> calRange

private Pair<int, int> fatRange

private Pair<int, int> carbRange

private Pair<int, int> protRange

private Pair<int, int> costRange

private Pair<int, int> cookingTimeRange

private String dietType

private Array<ENUM> acceptableDifficulties

private Array<Ingredient> restrictedIngredients

Methods

public static Preference fromJSON(String) Returns a Preference object from its json
representation.

public static String toJSON(Preference
preference)

Returns the json representation as a
String of a Preference object.

22

3.2 Server

In this section, the classes grouped under the three components of the client package are
presented.

3.2.1 Route Tier

RequestHandler

This class is responsible for handling requests and rerouting them to a relevant request
handler if possible.

Methods

public boolean handleRequest(String url,
Request req)

Sends the request to a relevant request
handler. If unsuccessful, which means
that the request is not relevant to any
request handler, then it returns false and
sends back the corresponding response.

3.2.2 Logic Tier

UserRequestHandler

This class is responsible for handling user related requests. The handler methods of this
class return true if successful, false otherwise. Request body that is provided to requests
will contain all the relevant information that is needed by the method. Arguments to the
methods (data) are passed inside the request body. For every request regarding a user a
token is expected.

Methods

public boolean
fetchUserInforHandler(String url, Request
req

Fetches user related information.

public boolean
updateUsernameHandler(String url,
Request req)

Updates the username

public boolean
updateHeightHandler(String url, Request
req)

Updates the height of the user.

public boolean
updateWeightHandler(String url, Request
req)

Updates the weight of the user.

public boolean addAllergyHandler(String
url, Request req)

Adds a new allergy type to the list of
allergies of the user.

public boolean
removeAllergyHandler(String url, Request
req)

Removes an allergy type from the list of
the allergies of the user.

23

public boolean updatePreferences(String
url, Request req)

Updates the preferences of the user

public boolean likeRecipeHandler(String
url, Request req)

Adds a recipe to the user’s list of liked
recipes

public boolean
unlikeRecipeHandler(String url, Request
req)

Removes a recipe from the user’s list of
liked recipes.

public boolean
dislikeRecipeHandler(String url, Request
req)

Adds a recipe to the user’s list of disliked
recipes.

public boolean
undislikeRecipeHandler(String url,
Request req)

Adds a recipe to the user’s list of disliked
recipes.

public boolean
likeIngredientHandler(String url, Request
req)

Adds an ingredient to the user’s list of
liked ingredients

public boolean
unlikeIngredientHandler(String url,
Request req)

Removes an ingredient from the user’s
list of liked ingredients.

public boolean
dislikeIngredientHandler(String url,
Request req)

Adds an ingredient to the user’s list of
disliked ingredients.

public boolean
undislikeIngredientHandler(String url,
Request req)

Adds an ingredient to the user’s list of
disliked ingredients.

Im2IngredsRequestHandler

This class is responsible for handling the Im2Ingreds class related requests. The handler
methods of this class return true if successful, false otherwise. Arguments to the
methods (data) are passed inside the request body

Methods

public boolean predictHandler(String url,
Request req)

Fetches the prediction results of the
Im2Ingreds model.

AuthenticationRequestHandler

24

This class is responsible for the authentication of the related request. The handler
methods of this class return true if successful, false otherwise. Arguments to the
methods (data) are passed inside the request body.

Methods

public boolean
authenticationHandler(String url, Request
req)

This method will check whether a user
exists in the system and if so it will return
a token for a user so that he can use that
token as an identity in the subsequent
requests.

RegistrationRequestHandler

This class is going to handle all the requests to the server related to registration.
Arguments to the methods (data) are passed inside the request body.

Methods

public boolean registration(String url,
Request req)

This method is going to register a user if
all mandatory fields such as email and
password are provided. If the email is not
a real email or if the password is not
strong enough the registration request
will be rejected and the method will
return false. Otherwise the user will be
successfully registered in the Foodster.

MealRecommendationRequestHandler

This class is responsible for recommending meals to users taking into consideration the
history of meals that users liked and other preferences that they provided to the
Foodster such as their diet types, amount of calories they want to take in, their budget
et cetera. Arguments to the methods (data) are passed inside the request body.

Methods

25

public boolean
recommendMealFromHistoryHandler(Strin
g url, Request req)

This conservative meal recommender
method recommends meals to Users
looking at the meals that they liked in the
past, and how the meals that are
planning to be recommended are similar
to the meals they liked. The similarity of
meals will be calculated using
mathematics such as Euclidean distance
of meals’ ingredients and scalar product
of ingredients of the meal.

public boolean
recommendMealRandomHandler(String
url, Request req)

This non conservative meal recommender
method recommends meals to Users
randomly from the pool of meals that are
allowed to the User considering User’s
allergies and diet types. However, the
history of meals will not be considered for
this method, because we want a User to
try something new that he might
potentially like and at the same time that
he would not try himself.

GroceryListRequestHandler

The class that manages grocery list operations. The request body for these methods
assumed to have all relevant information for the method.

Methods

public boolean
groceryListGenerationFromScratchHandle
r(String url, Request req)

This method is going to generate a
grocery list for the user that is required
for a meal or for a meal plan assuming
that User does not have any groceries.
This method is going to return a list of
missing ingredients if one or more of the
ingredients for the meal or meal plan are
not available in the grocery stores from
which Foodster orders groceries.

public boolean
groceryListGenerationHandler(String url,
Request req)

This method is going to generate a
grocery list for the items that User does
not have. This method is going to return
a list of missing ingredients if one or
more of the ingredients for the meal or
meal plan are not available in the grocery
stores from which Foodster orders
groceries.

public boolean getUserGroceryList(String
url, Request req)

This method is going to return a grocery
list that was generated already in the
past for the user.

26

RecipeFetcher

The class that manages recipe operations. The request body for these methods assumed to have all
relevant information for the method.

Methods:

public boolean getInstructions(String url, Request
req)

Makes a database query to get the instruction
details of the given recipe in the request.

public boolean getImagePath(String url, Request
req)

Makes a database query to get the image path in
the storage database of the recipe in the request.

public boolean getLikingUsers(String url, Request
req)

Makes a database query to get the list of the
users who liked the recipe in the request.

public boolean
getRecipeWithNutritions(String url, Request req)

Finds a recipe with given nutrition constraints in
the request.

public boolean getRecipe(String url, Request req) Sets all attributes of the given recipe by making a
database query with given recipe id in the
request.

OrderingRequestHandler

The class that manages meal ordering operations. The request body for these methods assumed to have
all relevant information for the method.

Methods:

private boolean login(String username, String
password)

Logins the external ordering system with the
given credentials in the body of the request.

public boolean searchForMeal(String url, Request
req)

Makes a search for a given meal in the ordering
system and lists relevant meals.

private void
sortSearchResult(String url, Request req)

Sorts the result list of search according to the
given sorting style.

private void prepareOrderAndShow() Chooses the first meal in the sorted meal list,
adds this meal to cart and prepares the order for
payment.

public boolean
makePayment(String url, Request req)

Makes payment with the given card details in the
request such as card id, ec2 number etc.

27

3.2.3 Data Tier
Data tier classes are the same with the client side model classes, except Im2Ingreds,
which is presented below.

Im2Ingreds

This class is responsible for inferring ingredients of a meal given a picture of the meal.

Attributes

private <NNModuleType>[] layers

Methods

public loadWeights(String weightsPath) Loads weights of the layers from a file
given its path

public <JSONType> predict(ImgMtx img) Predicts the ingredients of the meal
based on the image matrix given as an
input and returns the predictions as a
json object

28

