

Bilkent University

Senior Design Project

Foodster: Maintain your diet easier

High Level Design Report

Khasmamad Shabanovi, Gledis Zeneli, Balaj Saleem, Ibrahim Elmas, Perman Atayev

Supervisor: Ozcan Ozturk
Jury Members: Dr. Çigdem Gündüz-Demir, Dr. Can Alkan

Contents

Introduction 4

1.1 Purpose of the system 4

1.2 Design goals 4

1.2.1 Usability 4

1.2.2 Supportability 4

1.2.3 Reliability 4

1.2.4 Efficiency 4

1.2.5 Security 5

1.2.6 Scalability 5

1.2.7 Extensibility 5

1.3 Definitions, acronyms, and abbreviations 5

1.4 Overview 5

Proposed software architecture 5

2.1 Overview 5

2.2 Subsystem decomposition 6

2.3 Hardware/software mapping 7

2.4 Persistent data management 7

2.5 Access control and security 7

2.6 Global software control 8

2.7 Boundary conditions 8

2.7.1 Initialization 8

2.7.2 Termination 8

2.7.3 Failure 9

Subsystem services 9

3.1 Client 9

3.1.1 Presentation Layer 10

3.1.2 Controller Layer 10

3.2 Server 11

3.2.1 Logic Layer 11

3.2.2 Data Layer 12

Consideration of Various Factors in Engineering Design 12

Teamwork Details 13

2

5.1 Contributing and functioning effectively on the team 13

5.2 Helping creating a collaborative and inclusive environment 13

5.3 Taking lead role and sharing leadership on the team 14

References 14

3

1. Introduction

Food is the first of all fundamental human needs, yet how many times today have you,

personally, consciously thought of what you have and will be eating today, what its

nutritional value is and how it fits into your greater nutritional, fitness, and lifestyle goals?

With the ease of falling into a routine and the abundance of staple food, keeping track of

all these variables, and making sure that you plan your meals such that your priorities are

heeded, becomes increasingly mundane, monotonous, and just unnecessary extra work.

With the fast-paced lifestyle of the 21st century, monotony and unnecessary work are the

last things an individual needs in his/her busy life. Figuring out what to eat, to order or to

cook, how to cook it, where to get the ingredients from, and how beneficial this meal

would be for your body are questions that would take precious time and energy that could

be better employed elsewhere.

Furthermore, the complications of searching for the nutritional data, planning a healthy

diet according to one's needs, planning the budget for such a diet, and finding recipes to

support this time is truly a cumbersome endeavor.

This is where Foodster comes in.

 1.1 Purpose of the system

Foodster will simplify the complicated process of eating healthy and take the thinking out

of the simple and fundamental process of having food. This means the complete

integration of planning meals with one's constraints, listing the ingredients and

requirements for such meals, automated ordering of these ingredients or automated

ordering of these meals. This draws inspiration from apps such as myfitnesspal which help

the user reach their nutritional goals with the least possible effort. All this will be

amalgamated into a cross platform mobile application.

 1.2 Design goals

1.2.1 Usability

● Users should be able to find it intuitive to use the system.

● Users should not face any major navigation and operational challenges

while using the system.

● Users should be able to use the system to get meaningful and insightful

results quickly.

1.2.2 Supportability

● Users should be able to use the application using android and iOS

Operating systems.

● Users should be able to use the application with phones and tablets that

support iOS and Android.

1.2.3 Reliability

● No information that was gathered from the user should be lost.

● No meal plan, grocery list that was generated for the user should be lost.

● There will be no down times of the server and all services will always be

available.

1.2.4 Efficiency

● No functionality of the application should take longer than 1s.

● The response time of the heavy and non-heavy users should not differ

drastically, meaning that both should still be able to use any functionality

under 1s.

4

1.2.5 Security

● Users passwords should be hashed to ensure accounts' security.

● Users data should only be used for the purposes of serving users' requests

and making the application better.

● Authentication should be required to change any sensitive data of a user.

● Any sensitive data regarding users' payments and cards should be securely

stored in the database that can only be accessed by the admins of the

system.

1.2.6 Scalability

● If the Latency of the application increases with the number of users, the

number of hardware that is serving users as well as the number of

databases that are storing should be increased to decrease the latency

back to 1s in the worst case scenario.

● If the location of users starts affecting their latency, CDNs should be used

to improve their experience with the application.

1.2.7 Extensibility

● The application should have logic separate from the UI, so that it's easy to

work on the two concurrently to add new functionalities to the application.

● The application should be coded to be as modular as possible, so that

changes in one part of the application does not significantly affect other

parts.

 1.3 Definitions, acronyms, and abbreviations

● CDN - Content Delivery Network.

● REST api - Representational State Transfer. A software architectural style that

defines a set of constraints to be used for creating Web services.

● GUI - Graphical User Interface

● Facade class - a software design architecture technique which acts as a facade or a

proxy for a larger set of services and classes.

● Http - HyperText Transfer Protocol. Network protocol which regulates information

sharing and handling.

● JWT - JSON Web Token. Web standard for secure information transfer between two

parties in a network.

 1.4 Overview

Foodster will be used to reduce the friction of maintaining a healthy diet for users with the

goals they have in mind such as losing or gaining weight, or following diets such as paleo,

keto and vegan. Also, foodster will make it easier for people to order their groceries as well

as keeping track of which groceries they have, order their meals, keep track of their meal

plans and more.

2. Proposed software architecture

 2.1 Overview

This section will go over our design choices with regards to Foodster’s software

architecture. Section 3.2 will consist of a high level subsystem decomposition, where we

outline the modules of our system and how they interact with each other. A more detailed

on the services provided by these modules will be provided in section 4. Section 3.3

explains with the help of a UML diagram how our software will be distributed and deployed

to the relevant hardware. Section 3.4 and 3.5 cover how data will be managed so that it is

persistent and securely stored and accessed, respectively. In 3.6 we explain how the

workflow of our software will be controlled. Section 3.7 explores how our software will

handle the boundary conditions of initialization, termination, and failure.

5

 2.2 Subsystem decomposition

Figure 1: Subsystem Decomposition

On the highest level our software will be structured as a Client-Server architecture with

some caveats. The user’s side will interact with the client where GUI and REST api calls are

made to the server. The Client subsystem is itself broken down into a Presentation module

which consists of UI handling components and their listeners. The Presentation layer of the

Client communicates with the Logic layer of the Client which processes the raw information

and sends it to the server to actually be used.

The Server subsystem, similarly to the client, is itself broken down down to a Logic and

Data layer. The Logic layer of the Server is where the majority of the processing of our

software will be made. It contains all the required components to provide the processing

functionalities of our software with exception to the Migros Service Adaptor and

YemekSepeti Service Adaptor. This design choice is deliberate as we intend for these

components to be completely self sufficient and not necessarily part of our main

application stack. The Logic layer of the Server communicates with the Data layer of the

Server to retrieve and update information. The Data layer will store all the information of

our software ranging from user info to the data about recipes and ingredients.

6

All communication between different layers in our system are done through facade classes

to decrease coupling. We also use a form of opaque layering where each layer only

communicates with the one before and after it. These design choices bring great flexibility

in case we wish to refactor some components or change functionalities. Opaque layering

causes some overhead through the required transition/facade modules, but it also allows

for easier testing as we would only need to mock/stub two layers max for testing any

single layer.

Some other consideration worth exploring is why organise the subsystems as Client-Server

where both the Client and Server have two additional layers composing them, when 4-Tier

architecture could have potentially been used as well. Our decision was influenced by the

planned deployment of these layers as 4 Tier architecture suggests the software

components are distributed across 4 different systems and must be managed separately,

but that is not the case with us (more on this in 3.3).

 2.3 Hardware/software mapping

The subsystem decomposition diagram presented in Figure x is helpful to illustrate the

hardware/software mapping of our system as it is 1-to-1 with what would be the

deployment diagram of our system. The Client component and its subcomponents will be

deployed on the user mobile device which would be running Android or iOS. The Server

component and its subcomponents will be hosted in a cloud server running Linux. There

will be no need for special hardware to host the database as the database will be run in

Docker containers within the OS of the cloud server. The Logic subcomponent of the Client

and the Logic subcomponent of the Server will communicate via http. The Yemek Sepeti

Service Adapter and Migros Service Adapter will be deployed in separate cloud servers and

will communicate with the Logic subcomponent of the Server via http protocol as well.

 2.4 Persistent data management

Our application will store all of its user and food related data in a database in the server.

The main reason for choosing a database over a file system is querying. Querying is an

important part of our application as its services mainly consist of searching and filtering

information. Using a file system would be inconvenient due to the large amounts of data

and the complicated queries we need to run. The database will guarantee the persistency

and handle the concurrent writes and reads for us.

In addition to the database, local device storage will be used to store some small amount

of the data fetched from the server to improve user experience and loading time. Such

data could include login credentials, meals schedules for the day etc., and they need to be

updated consistently based on the information retrieved from the server.

 2.5 Access control and security

First, let's consider access control. Communication with the server will be done through

REST api. Users will be able to register and authenticate freely through the REST api, but

every other call must be authenticated via JWT tokens. JWT tokens will be used to regulate

user sessions which makes sure that every user has access to only the information and

services intended for that user. Even knowing the server address, one cannot use its

services without registering and authenticating as a user. Security is also enforced by such

a system because nobody else other than the user themselves, and us who have access to

the server directly, can access the user’s preference and meal plan data. The decision to

not encrypt user data was made after deciding that the data was not critical and applying

encryption to that potentially large body of data would cause performance issues. The only

piece of user data which is encrypted in the password. Bcrypt encryption is used to hide

the password [1]. Bcrypt performs worse than more mainstream encryption methods like

SHA256, but it is superior in the security it provides [2].

 2.6 Global software control

Centralized event driven control will be used for Foodster. These events will be majorly

user driven. The events will be triggered by user interaction with the GUI, and send

requests to retrieve or update information to the server. The event triggering and handling

7

in the server will be asynchronously handled. This system fulfills all our functional

requirements. The application need only react to user actions and there is no need for

procedure driven control. Centralized control is convenient and intuitive to implement,

though we may need to use tools such as load balancers to account for increased numbers

of users in the future.

Some rarer events could also be model driven, which are triggered on the server side from

us developers to notify users about campaigns and promotions.

 2.7 Boundary conditions

Foodster consists of two major, largely independent, components, the client side software

and the server side software. Therefore, it is worth it to consider how the boundary

conditions play out for both these software components.

 2.7.1 Initialization

The initialization state occurs on the client side whenever the user opens the application.

On initialization, the application could be in one of two states. Determining which of the

two states is the current one is done through looking for JWT Token stored in the device

local storage. This requires the initialization of the classes which manage local storage,

and the classes which send requests to the server so the authentication token can be

verified.

First, when a token is not there or it has expired, the user is not signed in, and they are

displayed a login in page. Only the relevant UI is initialized since the classes to

communicate with the server are already initialized. When a successful login happens, a

series of initialization similar to the second case happens.

Secondly, the token is authenticated so the user is already logged in and is shown the

meal plan page. All the primary UI components (referring to the different menu options)

are initialized at this stage. The UI is filled with the ‘cache like’ data stored in the device

local storage while information is being retrieved and cross validated from the server. The

local storage management and server communication classes are already initialized by this

point so no extra work needs to be done.

The initialization state on the server is very rare, and only occurs once on deployment, on

complete failures, or after the servers have been taken down for maintenance. The

initialization consists of starting the Docker containers and exposing the database to a port

accessible from the server. Then the server software itself is configured, started, and

exposed to a port; then the REST api endpoints are set up, concluding the server side

software initialization.

 2.7.2 Termination

Termination of the client software happens whenever the user closes the app. No special

action needs to be taken within the software as the OS of the device will handle the

resource deallocation. If any requests made by the application are still under process in

the server, their changes will be stored, but their return values will be ignored as the

application is no longer running. This is ok because there are no critical operations the

server could be performing with regards to sending information back to the user.

Termination on the server side is rare and would happen when the server would require

maintenance. All new requests would be blocked, and there would be a need to wait for all

running requests and queries to terminate so as not to lose any data. Once there is no

longer any activity on the server, the database Docker containers would need to be

stopped and the server software be terminated.

 2.7.3 Failure

Failure on the client side could happen on three levels. First, uncaught exceptions could

cause the program to crash; in such scenarios a crash report would be sent to the server.

The application would report the failure to the user, and the user would be allowed to

continue using the app from the last stable state. Second, connection errors could cause

8

activity to halt; it would cause inconvenience, but no error in data storage or any other

process. The user would be notified and they could try again later. Third, the device OS

may decide to abruptly terminate the application to free resources for other applications;

this is not problematic as this case is almost symmetric to the termination case of the

client side software.

Failure on the server side could really only happen due to unhandled exceptions. If the

hardware fails and the server fails is out of our control, and many cloud services have

insurance packages to account for data loss damages in case this rare scenario happens.

Due to the operations in the server being uniform and asynchronous, only that single

request would fail, its failure would be logged and reported to the user, and the other

processes would continue to operate normally. Restarting the server in such cases could be

problematic.

3. Subsystem services

Foodster is composed of the interactions of two separate systems: Client (End User) and

the Server

3.1 Client

Figure 2: Client Subsystem

The client can be used with the Android and IOS operating systems via smartphones or

tablets. The client comprises the subsystems of the presentation and controller.

Presentation layer is responsible for presenting our functionalities to the users in a

user-friendly interface. Controller layer is responsible for fetching data or posting data to

the server when events are initiated by the view class. Both presentation and controller

layers are going to be discussed next.

9

3.1.1 Presentation Layer

The layer of the presentation includes views.

MealPlanView: The view class for presentation of meal plans and interactions of users

with meal plans like adding a meal to plan or changing meal plan.

LoginView: The view class for authentication - sign in, sign up-. Takes input from the

user for authentication processes and interacts with UIManager to check the credentials

like username, password.

RecipeView: The view class for presentation of recipes and their ingredients, filtering

recipes according to some filters such as nutrition quantity - 20g protein per 100g -.

Interacts with UIManager for fetching recipe and nutrition data.

GroceryView: The view class for presentation of current grocery list and grocery list

operations such as generating grocery list for chosen days or specific meals in a day.

Interacts with UIManager to fetch current grocery list data, meal plan data for generating

grocery list and generating a grocery list and sending it to the server.

InventoryView: The view class for presentation of current inventory and operations such

as adding an item/ingredient to current inventory or removing an item. Interacts with

UIManager to fetch inventory data and send inventory changes to the server side.

PaymentView: The view class for presentation of payment operation. Interacts with

UIManager to check payment details like card number and make the payment.

StatisticsView: The view class for presentation of statistics of the user such as average

daily protein intake in last 5 days, daily nutritional intakes. Interacts with UIManager to

fetch statistics data from the server.

PreferencesView: The view class for presentation of preferences like desired daily protein

intake, allergies. This view class is also the presentation class for preference change

operations. Interacts with UIManager to fetch preferences data and send preference

changes to the server.

UIManager: The class that manages the views and provides communication between

controller layer and view classes. Interacts with the view class to get updates to send the

server.

3.1.2 Controller Layer

The controller layer includes manager classes for the view classes in the presentation

layer. These manager classes are responsible for communication between the view classes

and server.

ControllerAdaptor: The facade class for the communication of UIManager with the

manager classes. Interacts with all of the managers to provide an api to the presentation

layer.

AuthenticationManager: The class that manages authentication operations like signin in

and signing up. Interacts with ConnectionProvider to send credentials to the server.

MealPlanManager: The class that manages meal plan operations like meal plan data

fetches, meal plan changes and new meal plan generations. Interacts with

ConnectionProvider for fetching meal plan data, sending meal plan changes that are made

in the presentation layer to the server and sending details for a new meal plan to request a

new meal plan.

GroceryListManager: The class that manages grocery list operations like fetching current

grocery list data, generation of new grocery list. Interacts with ConnectionProvider for

fetching grocery list data and meal plan data and sending grocery list generation details

like chosen days and meal to the server for generation of grocery list.

10

PreferencesManager: The class that manages preferences operations like fetching

preferences data from the server and providing this data to the presentation layer and

sending preferences changes that are made in the presentation layer to the server.

Interacts with ConnectionProvider to fetch preferences data and send preferences changes

to the server.

RecipeManager: The class that manages recipe operations like fetching recipe and

ingredient data, search queries with some filters. Interacts with ConnectionProvider for

fetching recipe/ingredient data and sending search queries to the server.

ConnectionProvider: The class that is used by the manager classes to communicate with

the server. Interacts with the ServerAdaptor class of the server via REST api.

3.2 Server

Figure 3: Server Subsystem

3.2.1 Logic Layer

The logic layer includes the business logic of our system. There are separate manager

classes for major functionalities of our system like meal planning, grocery lists. This layer

has also a facade class ServerAdaptor which is the doorway of the server to client.

ServerAdaptor: The class that is the doorway of the server to client-side. Interacts with

all of the controllers to provide their functions to client-side.

PictureMealDetectionManager: The class that detects the ingredients from the given

picture. Interacts with User Information Database to log these ingredients.

GroceryListManager: The class that contains business logic for grocery list operations

like fetching grocery list data, generating a new grocery list. Interacts with

MealPlanManager to get the meal plan data of the given days and specific meals to get

recipes and their ingredients. Interacts with Migros Service Adaptor for required operations

to order the current grocery list. These operations are

- checking if all of the ingredients are in stock

- searching for alternatives for the ingredients that are out stock at the

moment

11

- preparing the shopping cart

- making payment

Interacts with User Information Database for fetching current grocery list data, saving new

generated grocery list.

AuthenticationManager: The class that contains business logic for authentication

operations - signing in, signing up-. Interacts with User Information Database to check

credentials or store them.

PreferencesManager: The class that contains business logic for preferences operations

like fetching preferences data, making preferences changes that are made in the

client-side. Interacts with User Information Database to perform these operations.

RecipeManager: The class that contains business logic for operations related to the

recipe and ingredients like fetching recipe data and data of the ingredients of this recipe,

searching for recipes with some filters. Interacts with Recipe & Ingredient Database for

these operations.

MealPlanManager: The class that contains business logic for meal plan related operations

like fetching current meal plan data, adding an extra meal to current plan, generation of a

new meal plan and changing some meals in the current meal plan. Interacts with

RecipeManager to get some recipes with some filters that are adjusted with respect to

preferences of the users like daily nutritional intake goals, unliked meals, favorite meals

and allergies. Interacts with User Information Database for fetching current meal plan,

saving the generated meal plan and updating the current meal plan with given changes.

3.2.2 Data Layer

Data layer handles the main storage of the server

User Information Database: This database contains tables and other database

structures required for storing user account data, user preference data, meal plan data

and grocery list data. We will have separate collections to store these datas.

Recipe & Ingredient Database: This database contains recipe and ingredient datas.

4. Consideration of Various Factors in Engineering Design

Our product revolves around optimising the convenience and health factors of cooking.

Therefore, a big part of our design process will be food and health related considerations

ranging from more serious conditions like allergies and diabetes to milder concerns like

making sure the users receive a well balanced variety of nutrients. These will dictate how

we configure our recommendation algorithms. Depending on how one looks at it, these

may also be considered as safety concerns especially when certain foods might risk the

well being of the users.

One of the features of our app is financial optimization of cooking. We will focus on

designing a system which achieves this while maintaining quality of product

recommendations.

In order to make the experience most tailored to the user, we will design our

recommendations as such to take into account the food culture of the region where the

user lives and has grown up with. We believe this will have a great impact on the user

experience with the app.

12

Table 1. Factors that can affect analysis and design.

5. Teamwork Details

 5.1 Contributing and functioning effectively on the team

We have determined our goals beforehand and made sure that all of us are aware of these

goals, so that we can make decisions faster and spend more time on development. Also,

we divide tasks into modules to ensure proper teamwork. These modules are assigned to 3

people at most. Each of these sub-team has a leader assigned. By means of modulation

and structure of our sub-teams, we can specialize in that field and give proper support to

each other. What is more important, we always include all team members in the planning

processes for the team to function effectively. So that nobody feels excluded and all

members will share their ideas and be a part of not only work, but also decision making

throughout the project. We prefer short frequent weekly meetings instead of long

discussion meetings, which we found to be unproductive. These meetings are used to

inform each other on our progress on our assigned tasks.

 5.2 Helping creating a collaborative and inclusive environment

In all of our work, we always keep others up to date on our progress to track each other’s

work and not to miss any important information. Besides informing what we have done on

our task, we also let our team know about bad situations like not being able to handle the

task assigned to him/her. So that we can check our division again and make a better

distribution of tasks to ensure that all members are contributing. What is more, before we

submit our work, each one of the tasks is assigned to some other team-mate for review

and feedback. So that we ensure the quality of the work and give each other support.

13

 Effect level Effect

Public health 10 Improving the health of the users is a

primary concern. We will have to

configure our recommendations so that

they provide the greatest benefits to our

users.

Public safety 4 We will have to put reliable failsafes to

protect users who can have adverse

health effects from specific foods.

Public welfare 4 Designing our tool so we both collect

optimal data and give proper

recommendations to help our users

make cheaper and qualitative choices.

Global factors 0 Our app is quite personal in the

experience it provides and therefore its

design is not really reliant on global

factors.

Cultural factors 8 In order to provide the best experience

possible our recommendations will have

to be tweaked such that they account for

the cultural elements of local cuisine.

Social factors 0 We did not find any social factors which

may be critical to consider during our

design process.

 5.3 Taking lead role and sharing leadership on the team

We did not have a single leader throughout the project. We have decided that every

member will be the leader of the organizational proceedings of the team on a weekly basis.

The thinking behind this strategy is that everybody will lead the team sometimes and will

be able to dedicate themselves toward our project’s success. Similarly, we have also

divided our project into work packages, and these packages also have assigned leaders

who organize the work done and coordinate with other package leaders on the

implementation.

6. References

[1] https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.htm

[2] https://www.cs.princeton.edu/~appel/papers/verif-sha.pdf

14

https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.htm
https://www.cs.princeton.edu/~appel/papers/verif-sha.pdf

